3. Генетический анализ популяций (29 марта, среда):

- measuring of genetic variation at different levels
- genetic variation in individuals, populations and species

-Hardy-Weinberg equilibrium

-genetic analysis of single populations

Levels of genetic variation in Molecular Ecology studies

- Variation <u>within</u> genes (monomorphic & polymorphic) – alleles & haplotypes
- Variation <u>within</u> individuals (no 2 organisms in a sexually reproducing species are the same, except "clones" or monozygotic twins)
 - individual gene or multi-locus haplotype heterozygosity
- Variation <u>within</u> populations: gene pool

 allele frequencies, average heterozygosity, average number of polymorphic alleles and loci and other summary statistics, pairwise individual genetic similarity or distance, sharing indexes
- Variation <u>between</u> individuals, populations and species

 differentiation and genetic distance (pairwise and average)

Measuring of genetic variation within and between populations (in space, and how it changes over time)

- allelic and genotypic frequency within populations
- diversity measures (e.g., observed and expected heterozygosities)
- inbreeding index
- migration rate (gene exchange)
- similarity or dissimilarity between populations (allelic and genotypic frequency heterogeneity, distance, differentiation, etc.)

МОЛЕКУЛЯРНАЯ ЭКОЛОГИЯ, 29 марта 2017.

Hardy-Weinberg equilibrium

- The Hardy-Weinberg equilibrium allows us to calculate gene frequencies from phenotype frequencies with simplifying assumptions, such as (1) random mating, (2) no selection, (3) large population, (4) no migration, and (5) no mutations.
- It is especially important when one of alleles (*A*) is dominant. Then, frequency (*q*) of recessive allele *a* can be calculated as a square root from the frequency of homozygote *aa* that equals q^2 . Then frequency *p* of dominant allele *A* can be calculated as p = 1 q.
- Example: Albinism is a rare recessive genetic trait. About one in 20000 individuals is an albino in the US. Therefore, $q^2 = 1/20000$, and thus q is approximately 1/141. According to Hardy-Weinberg equilibrium, one in 141 alleles carries the recessive gene for albinism. How many people are "carriers" or heterozygotes *Aa* for albinism? The probability of being a heterozygote *Aa* is 2pq which equals $2 \times (140/141) \times (1/141) = 1/70$ or about 1.4%.

МОЛЕКУЛЯРНАЯ ЭКОЛОГИЯ, 29 марта 2017. Сг

Hardy-Weinberg Principle: *Why Deal With It?*

- H-W equilibrium *is a starting point (a null hypothesis).* It serves as a model for the genetic structure of a nonevolving population, such as an "ideal" gas in physics.
- It provides a *description of how genetic variation is* <u>maintained</u>.
- <u>Deviations from H-W may help us learn about evolutionary</u> <u>factors</u> (i.e. selection, migration, mutation, chance, non-random mating).
- We can study what happens when one or more of the assumptions is *violated*. (Although, it is often very difficult to determine causes of deviations from H-W genotypic proportions.)
- <u>We can use allele rather than genotype frequencies</u> to study population genetics. There are fewer alleles than genotypes, making calculations easier.

ЛЯРНАЯ ЭКОЛОГИЯ, 29 марта 2017. С

	Ι	let's	"do	" pop	oulation ge	neti	cs	• •	
A	<u>BO b</u>				rolled by 1 loo ^{(B}) and one <i>re</i>			allele	es, 2
	Genotype		Blood Type Phenotype		PEOPLE GROUP	0	Α	В	AB
					Ainu (Japan)	17	32	32	18
Genotype					Arabs	34	31	29	6
_					Asian (in USA - General)	40	28	27	5
ii			O (I)		Blackfoot (N. Am. Indian)	17	82	0	1
u					Chinese-Canton	46	23	25	6
TATA TA:		A:	A (II) B (III) AB (IV)		Chinese-Peking	29	27	32	13
I ^A I ^A , I ^A i I ^B I ^B , I ^B i I ^A I ^B		- <i>l</i>			English	47	42	9	3
		R.			Hindus (Bombay)	32	29	28	11
		^D l			Indians (India - General)	37	22	33	7
					Indians (USA - General)	79	16	4	1
					Japanese Kalmuks	30 26	38 23	22	10 11
						100	23	<u>41</u> 0	0
1	Group A	Group B	Group AB	Group O	Peru (Indians) Russians	33	36	23	8
		Group B	Group AB	Gittip C	Spanish	38	47	10	5
Destruction			AB	(Thais	37	22	33	8
Red blood cell type					USA (blacks)	49	27	20	4
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					USA (whites)	45	40	11	4
		* / \ =	• • •			10 010 00	40		-
	VI V			YI YI	Blood Type Compatibility Chart				
Antibodies present	Anti-B	Anti-A	blanc		Blood Group Can Recieve From	Can Donate To		hat is	
	Anu-B	Anti-A	None	Anti-A and Anti-B	A A·O	A-AB		<i>BO</i> bl	ood
Antigens present	A antigen	↑ B antigen	A and B	No antigens	B B·O AB A·B·AB·O O O	B-AB AB		type	
	♥ A antigen	∲ B antigen	A and B antigens	Ŭ	AB A.B.AB.O	AB A·B·AB·O		type	2

	AB	<i>O</i> blood	group i	nheritar	nce	
In t	the United States,	in the white p	opulation:			
41 10	 % has blood type % has blood type % has blood type % has blood type 	<i>A</i> : 0.41 = geno <i>B</i> : 0.10 = geno	by type $I^A I^A$ and I^A by type $I^B I^B$ and I	$A_i = \text{expected fi}$ $B_i = \text{expected fi}$	requency $p^2 + 2$ requency $q^2 + 2$	
р = q =	What $q + r = 1$ $= 1 - q - r = 1 - [(0 + 1)^{-1} - (0 + 1)^{-1}$	$(q+r)^2]^{\frac{1}{2}}=1-(q^2)^{\frac{1}{2}}=1-(p^2)^{\frac{1}{2}}=1-(p^2)^{\frac{1}{2}}$ Frequence Frequence	· ·	$-(B+O)^{\frac{1}{2}} = 1-((A+O)^{\frac{1}{2}}) = 1-((B+O)^{\frac{1}{2}}) = 1-((B+O)^{\frac{1}{2}}) = 1-((B+O)^{\frac{1}{2}})$ = 0.26 = 0.07	$0.10+0.45)^{\frac{1}{2}}=0$	
[Mother/Father	0	A	В	AB]
	0	0	О, А	О, В	А, В	
	А	0, A	О, А	O, A, B, AB	A, B, AB	
	В	О, В	O, A, B, AB	О, В	A, B, AB	
20	AB	А, В	A, B, AB	A, B, AB	A, B, AB	8

Blood type	Genotype	Observed	Expected	$\chi^2 = \sum [(Obs-Exp)^2/Exp]$
0	ü	45	$r^2 \times 100 = 44.89$	(45-44.89) ² /44.89=0.0003
A	I ⁴ I ⁴ and I ⁴ i	41	$(p^2 + 2pr) \times 100 = 41.6$	(41-41.6) ² /41.6=0.0087
B	I ^B I ^B and I ^B i	10	$(q^2 + 2qr) \times 100 = 9.87$	(10-9.87) ² /9.87=0.0017
AB	I ^A I ^B	4	$2pq \times 100 = 3.64$	(4-3.64) ² /3.64=0.0356
			$\chi^2 = 0.0462 (< 3.6)$	58, <i>d.f.</i> =1), <i>P</i> > 0.05

Introduction to probability

• Правило сложения. Сумма вероятностей $p_1, p_2, p_3 \dots p_n$ для всех *n* возможных взаимоисключающих, несовместимых событий равна их сумме, т.е. единице ($p_1 + p_2 + p_3 \dots + p_n = 1$).

Example 1: Tossing a coin: p_1 (head) = 0.5, p_2 (tail) = $1 - p_1 = 0.5$

Example 2: Contracting an infection $p_1 = 0.1$, staying healthy $p_2 = 1 - p_1 = 0.9$

Expected number of outcomes (E) of type 1 for N trials: $E_1 = N \cdot p_1$, the variance is $N \cdot p_i \cdot (1 - p_i)$

• Правило умножения. Если два события, *A* и *B*, независимы (т. е. возникновение одного события не влияет на возможность появления другого), то вероятность того, что оба события произойдут, равна произведению вероятности каждого $P_{(A,B)} = P_A \cdot P_B$. Это правило применимо к любому числу событий.

Example 1: Tossing a coin: The joint probability of obtaining a head from a fair coin four times (N = 4) in a row is $P_{(I,I,I,I)} = p_I p_I \cdot p_I \cdot p_I = 0.5 \cdot 0.5 \cdot 0.5 = 0.0625$

• In general, if the probability of the first outcome is p and of the second outcome is q,

the **<u>binominal probability</u>** that the first type of outcome will occur i times in N

independent trials is $P_i = \frac{N!}{i! j!} p^i \cdot q^j$ (for above example $P_4 = \frac{4!}{4! \cdot 0!} 0.5^4 \cdot 0.5^0 = 0.0625$) where (i + j = N), or probability of obtaining a head 2 times and a tail 2 times in any

order (N = 4): $P_4 = \frac{4!}{2! \cdot 2!} 0.5^2 \cdot 0.5^2 = 0.375$)

Introduction to probability

• If there are more than two possible outcomes, the probability of a combination of outcomes can be calculated from a <u>multinomial</u> <u>probability distribution</u>

Example 1: Three types of outcomes, such as genotypes A_1A_1 , A_1A_2 , and A_2A_2 . Then, probability *P* of obtaining *i* of genotype A_1A_1 , *j* of genotype A_1A_2 , and *k* of genotype A_2A_2 (*i* + *j* + *k* = *N*) is

$$P_{(i,j,k)} = \frac{N!}{i! \cdot j! \cdot k!} \cdot P^i \cdot H^j \cdot Q^k$$

where P, H, and Q are the probabilities (frequencies) of the three genotypes in the population from which the sample was taken

МОЛЕКУЛЯРНАЯ ЭКОЛОГИЯ, 29 марта 2017, Сг

(P + H + Q = 1)

2.3. Exercise & discussion: Answer the questions DNA, RNA, etc. 1) A nucleic acid was analyzed and found to contain 37% A, 16% G, 22% C, and 25% T. Does these data present single strand RNA, single strand 1) DNA, double strand RNA, double strand DNA? What are percentage of purines? 2) 3) Which genomic nucleotide frequency ratios equals to 1 in the following combinations? A/G C/T C/G (A+C)/(G+T)(A+G)/(C+T)(A+T)/(G+C)МОЛЕКУЛЯРНАЯ ЭКОЛОГИЯ, 29 марта 2017, Сре

Estimate allele	1	190	198
	2	190	192
and genotype	3	190	192
frequencies	4	192	198
-	5	190	190
using the table	6	190	190
	7	190	192
	8	190	190
	9	190	192
= <u></u> ====_	10	190	192
	11	192	192
	12	190	195
	13	192	198
Contraction Contraction	14	190	198
	15	190	198
	16	192	195
	17	190	195
	18	190	192
Microsatellite SSR:	19	190	195
Codominant marker	20	190	195