From previous lectures:
• binomial and multinomial probabilities
• Hardy-Weinberg equilibrium and testing HW proportions (statistical tests)
• estimation of genotype & allele frequencies within population
•maximum likelihood
• methods used to detect and observe genetic variation:
\checkmark 1960s-1970s [•] genetic variation was first measured by protein electrophoresis (e.g.
allozymes)
$\sqrt{1980s}$ -2000s: genetic variation measured directly at the DNA level:
Restriction Fragment Length Polymorphisms (RFLPs)
Minisatellites (VNTRs)
DNA sequence
\checkmark 1990s-2000s: PCR based methods and high-throughput genotyping:
Cleaved Amplified Polymorphism (CAP)
Single-stranded Conformation Polymorphism (SSCP)
Microsatellites (SSRs, STRs)
Random Amplified Polymorphic DNAs (RAPDs)
Amplified Fragment Length Polymorphisms (AFLPs)
Single Nucleotide Polymorphisms (SNPs)
✓ <u>2007-now:</u> Genotyping via high-throughput massively parallel sequencing
Тоday (29 марта, среда) :
how to measure and quantify genetic variation
МОЛЕКУЛЯРНАЯ ЭКОЛОГИЯ. 29 марта 2017. Среда. #4

Levels of genetic variation for a single gene, multiple genes or an entire genome

- within individuals
- between individuals
- within populations
- between populations
- over the entire set of populations
- between different taxa (species, genera, families, etc.)

- <u>Polymorphism (P)</u>: proportion or % of loci or nucleotide positions showing more than one allele or base pair
- <u>Heterozygosity (H)</u>: proportion or % of heterozygous loci per individual, or proportion or % of individuals that are heterozygotes in a population
- <u>Allele/haplotype diversity (*h*)</u>: measure of number and diversity of different alleles/haplotypes within a population
- <u>Nucleotide diversity $(\pi, \Theta, \text{etc.})$ </u>: measure of number and diversity of variable nucleotide positions within sequences of a population
- Synonymous (K_S , d_S , etc.) or nonsynonymous substitutions (K_A , d_N , etc.): % of nucleotide substitutions that do not or do result in amino acid replacement
- <u>Genetic distance (d, D, etc.)</u>: measure of similarity or dissimilarity between two homologous sequences, individuals or populations
- <u>Genetic differentiation $(G_{ST}, F_{ST}, R_{ST}, \Phi_{ST}, \text{etc.})$ </u>: measure of subdivision, differences among homologous sequences, individuals or populations

МОЛЕКУЛЯРНАЯ ЭКОЛОГИЯ, 29 марта 2017.

How to quantify genetic variation?
I. Within individual variation: Individual heterozygosity (observed proportion of heterozygose loci: $H_i = N_{\text{het loci}}/N_{\text{loci studied}}$
II. Within population variation:
• Proportion of polymorphic loci ($P = N_{polymorphic loci} / N_{loci studied}$; <99% or <95% of the most common allele criteria)
• Average number of alleles per locus (A)
• Effective number of alleles per locus $(A_e = 1/\Sigma p_i^2)$
• Heterozygosity - observed (H_0) and expected (H_E), also referred to as "genetic diversity":
• for 2 alleles: $H_E = 2p_I p_2$
• for any number of alleles: $H_E = 1 - \sum p_i^2$
Deviations from Hardy-Weinberg expectations (per locus and population)
• Inbreeding or fixation index $F = (H_e - H_o)/H_e = 1 - H_o/H_e$
• Nucleotide diversity (Θ and π)
• Assessment of non-random association of non-allelic genes or linkage disequilibrium $(D, D', r^2, \text{etc.})$
• Estimates of N_e , effective population size (e.g., indirect from $\Theta = 4N_e u$)
Pairwise individual genetic similarity or distance, allele-sharing indexes, relatedness
III. <u>Total variation over the entire set of populations</u> :
• P , A , A_E , H , and F are calculated with all the samples considered to constitute a single group.
IV. Among population variation:
• Differences among populations in <i>P</i> , <i>A</i> , A_{E} and <i>H</i> . (Does one or more populations have unusually high or low values for any of the above?)
• F_{SD} , G_{SD} , R_{ST} – genetic variance measures. Hierarchical, if appropriate.
Heterogeneity and differences in allele frequencies among populations
Patterns of variation: clinal, ecotypic, and latitudinal correlations, etc.
• Assignment tests (how well do individuals match the population in which they were sampled?)
Genetic distances (Cavalli-Sforza's, Nei's, etc.)
Correlation between genetic distance and geographic distance (Mantel tests)
• Estimates of gene flow, effective population size ($\Theta = 4N_e \mathbf{m}$)
Cluster analysis, phylogenetic tree-building
• Multivariate Statistics - Principal Components, Principal Coordinate and Factor Analysis, Multidimensional scatting
 Assessment of whether partitions (subpopulation structure) exist in the data (Bayesian approaches, tree-building analyses) MOJEK JAPHAB 20070118, 29 warra 2017. Ore; 44

Nucl	eotide	diver	sity i	n 20	Dougla	as-fir can	didate gei	ies
Gene	Total sites, bp	SNPs	bp per SNP	Pars. SNPs	h	π	Θ	Tajima's D
EF1A	1072	14	77	9	0.940	0.00274	0.00339	-0.656
TBE	2954	58	51	36	0.963	0.00516	0.00626	-0.723
F3H1	365	14	26	4	0.690	0.00528	0.00988	-1.576
F3H2	647	14	46	12	0.828	0.00629	0.00562	0.150
Formin-like	337	3	112	3	0.585	0.00480	0.00229	1.498
AT	2578	93	28	66	0.966	0.00936	0.00935	-0.037
LEA-II	504	18	28	13	0.884	0.00647	0.00878	-0.862
MT-like	579	20	29	20	0.907	0.01334	0.00911	1.639
60S-RPL31a	609	21	29	18	0.701	0.01011	0.00891	0.479
LEA-EMB11	545	33	17	26	0.950	0.01378	0.01594	-0.593
40S-RPS3a	500	12	42	10	0.810	0.00601	0.00617	-0.336
PolyUBQ	898	17	53	15	0.840	0.00544	0.00494	0.357
ERD15-like	646	14	46	12	0.598	0.00438	0.00563	-0.757
ABA-WDS	344	9	38	5	0.825	0.00662	0.00672	-0.048
LP3-like	481	16	30	13	0.866	0.00662	0.00848	-0.713
CHS	762	11	69	5	0.569	0.00281	0.00371	-1.011
4CL-1	628	8	79	3	0.841	0.00268	0.00316	-0.460
4CL-2	629	10	63	7	0.814	0.00237	0.00378	-1.128
ADF	634	2	317	0	0.140	0.00023	0.00081	-1.511
APX	867	26	33	17	0.884	0.00636	0.00789	-0.700
Mean	829.0	20.7	40	14.7	0.780	0.00604	0.00654	-0.349
Total	16579	413		294				
13			молеку	лярная экс	ЛОГИЯ. 29 март	а 2017, Среда, #4		

Sites	π	Θ
all	0.00604	0.00654
coding	0.00424	0.00460
noncoding	0.00925	0.01044
nonsynonymous	0.00194	0.00240
synonymous	0.01187	0.01238
silent	0.00979	0.01068

Species	No. loci	θ _T (total per nucleotide site)	θ _{C (per} site in coding regions)	θ _{NC (per} noncoding site including introns and untranscribed	θ _{S (per} synonymous r site in coding regions)	θ _{NS} (per nonsynonymo site in coding regions)	Reference ^{pus}
Humon ^a	75	8 ± 2	8 ± 2	regions) 9 ± 2	15 ± 4	6 ± 1	Halushka <i>et al.</i> 1999
munian	106	5 ± 1	5 ± 1	5 ± 1	12 ± 3	3 ± 1	Cargill <i>et al.</i> 1999
Soybean	143	5 ± 2			10 ± 4	4 ± 2	Zhu et al. 2003
Douglas-fir	20	65 ± 27	46 ± 22	107 ± 46	124 ± 60	24 ± 17	Krutovsky & Neale 2005
Drosophila ^a	24	70 ± 58	40 ± 31	105 ± 80	130 ± 92	15 ± 14	Moriyama & Powell 199
Maize	21	96 ± 32	72 ± 25	111 ± 37	173 ± 61	39 ± 14	Tenaillon <i>et al.</i> 2001
θ values a ^a as compi	are mult led in 7	tiplied by 1	0 ⁴ (2000)				

• D = 0 (I or S = 1) when two samples are absolutely identical; I or S = 0 when they have <u>no</u> genetic elements in common (D = 1 or $\rightarrow \infty$).

ОЛЕКУЛЯРНАЯ ЭКОЛОГИЯ

Two alternative distances exist for the disequilibrium model
Geometric distance
- does not take into account evolutionary processes
 based only on allele frequencies
- divergence time cannot be directly inferred from distance
Genetic distance
 takes into account evolutionary processes
- distance increases from the time of separation from an ancestral population
- a genetic model of evolution is needed
When should we use geometric or genetic distance?
• <u>Geometric distance is used in studies of closely related individuals, accessions or populations</u> . It can be used with any markers, but often is used with <u>dominant</u> <u>markers (RAPDs, AFLPs)</u> whose molecular evolution is unknown. Because evolutionary aspects are not considered, the <u>dendrograms obtained cannot be</u> <u>interpreted as phylogenetic trees</u> giving information about evolution or divergence among groups.
• <u>Genetic distance</u> , in contrast, considers evolutionary models and can be incorporated into phylogeny studies. It can be used with both <u>codominant and dominant markers</u> , although, with the latter, information is incomplete.

Disequilibrium models: geometric distance

- This measures the direct relationship between the similarity index (S) and distance (D = 1 S)
- Different variables are possible, for example:
 - ✓ binary variables (e.g., RAPD, AFLP, SNPs)
 - \checkmark quantitative variables
 - \checkmark mixed types of variables

	Author		Expres	sio	n (S	=)	Ex	ample of the coefficient value if $a = 3$, $b = 1$, $c = 3$, $d = 2$
S1	Russel and Rao (1940)	a/n						0.333
S 2	Simpson	a/mi	n[(a + ł),(a	(1 + c)]		0.750
<i>S3</i>	Braun-Blanquet	a/ma	nx[(a + 1)]	b),(a	a + c)]		0.500
S4	Dice (1945); Nei and Li (1979)	a/[a	+ (b +)	c)/2				0.600
S 5	Ochiai (1957)	a/[(a	(a + b)	+ c)]1/2			0.612
S6	Kulczynski 2	(a/2))([1/(a+	b)] -	+ [1/	(a+c)])	0.625
S 7	Jaccard (1900, 1901, 1908)	a/(a	$+ b + c_{j}$)				0.429
S 8	Sokal and Sneath 5 (1963)	a/[a	+2(b +	c)]				0.273
S9	Kulczynski 1 (1928)	a/(b	+ c)					0.750
S10	Sokal and Michener (1958)	(a +	d)/n					0.556
S 11	Rogers and Tanimoto (1960)	(a +	d)/[a +	d +	2(b ·	+ c)]		0.385
S12	Sokal and Sneath 1 (1963)	(a +	d)/[a +	d +	(b +	c)/2]		0.714
S13	Sokal and Sneath 3 (1963)	(a +	d)/(b +	c)				1.250
Si Ja ai	imple Matching (S10), accard (S7) and Nei-Li (S4) re the most common indices		Indiv.i	1	Inc 1 a c	liv.j 0 b d	a+b c+d	

p-distance for nucleotide and amino acid sequence data

- If nucleotide or amino acid sequences are available, then the proportion (*p*) of different amino acids or nucleotides between sequences can be used for comparing of sequence divergence *p* = *S*/*N*, where *S* is the number of different (segregating) sites, and *N* is the total number of sites
- This proportion is called the *p*-distance
- If sites are subject to substitution with equal probability, then *S* follows the binomial distribution, and, therefore, the variance of *p* is given by $V_p = p(1-p)/N$

Nei M. & Kumar S. 2000 Molecular Evolution and Phylogenetics. Oxford University Press, New York

p-distance for nucleotide and amino acid sequence data

- The concept of the Poisson distribution helps to estimate the number of substitutions more accurately: $P = e^{-\mu} \mu^i / i!$, where μ mean, i number of occurrences
- If *u* is the rate of amino acid or nucleotide substitution (mutations) per year or generation, then the mean number of amino acid or nucleotide substitutions μ after a period of *t* years or generations is *ut* ($\mu = ut$)
- Then, the probability of occurrence of *i* amino acid or nucleotide substitutions (*i* = 0, 1, 2, 3, ...) is given by *P* = *e^{-ut}* (*ut*)^{*i*}/*i*!, where *ut* mean number of substitutions
- If no substitutions have occurred, then i = 0 and $P(0;t) = e^{-ut}(ut)^0/0! = e^{-ut}$

МОЛЕКУЛЯРНАЯ ЭКОЛОГИЯ, 29 марта 2017, Ср

- No substitutions for two sequences $(e^{-ut})(e^{-ut}) = (e^{-ut})^2 = e^{-2ut}$
- Respectively, probability of any substitutions $p = 1 e^{-2ut}$

p-distance for nucleotide and amino acid sequence data

Table 3.1 Sixteen different types of nucleotide pairs between sequences X and Y.

Class		Nucleo	tide Pair		
Identical nucleotides Frequency	AA O ₁	TT O ₂	CC O ₃	GG O ₄	Total <i>O</i>
Transition-type pair Frequency	AG <i>P</i> ₁₁	GA P ₁₂	TC P ₂₁	CT P ₂₂	Total P
Transversion-type pair Frequency	AT <i>Q</i> 11	$TA Q_{12}$	$\begin{array}{c} AC \\ Q_{21} \end{array}$	CA Q_{22}	
Frequency	TG Q_{31}	$\begin{array}{c} {\rm GT} \\ Q_{32} \end{array}$	$\begin{array}{c} \text{CG} \\ Q_{41} \end{array}$	GC Q_{42}	Total Q

МОЛЕКУЛЯРНАЯ ЭКОЛОГИЯ. 29

2017. 0

(Nei & Kumar 2000)

	A	т	С	G	A	т	C	G
		1	<u> </u>	0	**		U	
	(A) Ju	kes-Canto	r model		(E) HKY model			
Α	-	α	α	α	-	βg _T	βg _c	ag
т	α	-	α	α	βg _A	-	agc	βg _G
С	α	α	-	α	βgA	αg_{T}	-	βg _G
G	α	α	α	-	αg _A	βg_{T}	$\beta g_{\rm C}$	-
	(B)	Kimura m	odel		(F) Tamura-Nei model			
Α		β	β	α	-	βg_{T}	βg _C	a,go
Т	β	-	α	β	βg _A	-	$\alpha_2 g_C$	βg _C
С	β	α	-	β	βg _A	$\alpha_2 g_T$	-	βg _G
G	α	β	β	-	$\alpha_1 g_A$	$\beta g_{\rm T}$	βg_{C}	-
	(C) Ec	ual-input	model		(G)	General re	versible m	odel
A		ag	ag	ag		ag	bgc	cgG
т	αg _A	-	ag	ago	agA		. dg _C	egG
С	ag	αg_{T}	-	aga	bg	dg_{T}	-	fg _G
G	agA	$\alpha g_{\rm T}$	αg_{C}	-	cgA	eg_{T}	fg _C	-
	(D)	Tamura n	odel			(H) Unresti	ricted mode	əl
A	-	βθ,	βθ,	αθ,		a12	a.,3	a14
Т	βθ,		αθ,	βθ,	a.,		a23	a24
С	βθ,	αθ,	- '	βθ,	a.,	a32	-	a.34
G	αθ.	βθ,	βθ,	-	a41	a42	a43	-

